Immunoexpression of gemins 2 and 4 in the rat spinal cord. Is the SMN complex a new target in investigations of sporadic amyotrophic lateral sclerosis pathogenesis?

نویسندگان

  • Janina Rafałowska
  • Dorota Sulejczak
  • Roman Gadamski
  • Dorota Dziewulska
چکیده

Sporadic amyotrophic lateral sclerosis (sALS) is a neurodegenerative disease leading to degeneration and loss of motoneurons in different structures of the nervous system. Although aetiology of the disease is unknown, it is hypothesized that the survival motor neuron (SMN) protein which protects motoneurons in spinal muscular atrophy, may play a similar role in ALS. Relatively little is known about normal expression and functions of the SMN complex compounds, i.e. SMN protein and the related gemins. Therefore, we have decided to examine the physiological expression of SMN and gemins 2 and 4 in spinal cords of healthy Wistar rats at different age using immunofluorescence and immunohistochemical methods. Our study revealed that (1) in rat spinal cord neurons, the immunoexpression of SMN and gemins 2 and 4 is present through the whole animal lifespan although the reactive cells reveal different intensity of the immunolabeling, (2) both SMN and gemin 2, and SMN and gemin 4 are present in the same motoneurons, (3) immunoexpression of gemin 2 and 4 decreases slightly with aging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse Expression of Selected SMN Complex Proteins in Humans with Sporadic Amyotrophic Lateral Sclerosis and in a Transgenic Rat Model of Familial Form of the Disease

BACKGROUND AND OBJECTIVE There is circumstantial evidence linking sporadic amyotrophic lateral sclerosis (ALS) cases to a malfunction or deficit of a multimeric SMN complex that scrutinizes cellular RNAs; the core of this complex is survival motor neuron (SMN, or gemin 1) protein. We intended to verify this hypothesis by comparing the expression of both SMN and several other functionally associ...

متن کامل

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduc...

متن کامل

Survival motor neuron: motor neuron insurance for a whole lifespan?

The SMN (survival motor neuron) gene plays an important role in ontogenesis and its dysfunction leads to immatu-rity of skeletal muscles and motor neurons in the spinal cord. As a result of SMN mutations the affected cells die and clinical symptoms of spinal muscular atrophy (SMA) develop. Physiologically, SMN together with gemins is part of a multiprotein complex of particular importance to mo...

متن کامل

The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy

Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Folia neuropathologica

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 2012